

Circuit

IGBT Modules

 V_{CES} 1200V Ic 100A

Applications

- · AC and DC motor control
- · PFC
- · SMPS
- · Brake switch

Features

- Low V_{CE(sat)} with Trench Field-stop technology
 V_{CE(sat)} with positive temperature coefficient
 Small temperature coefficient

- Low inductance
- · Isolated copper baseplate using DBC technology
- · SOT-227 package

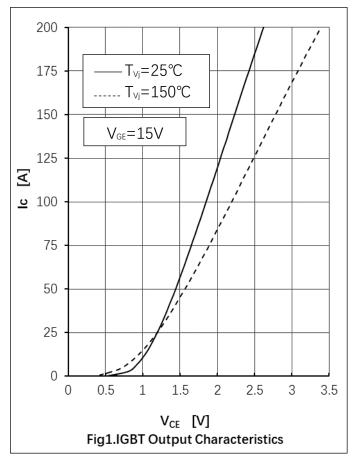
Absolute Maximum Ratings

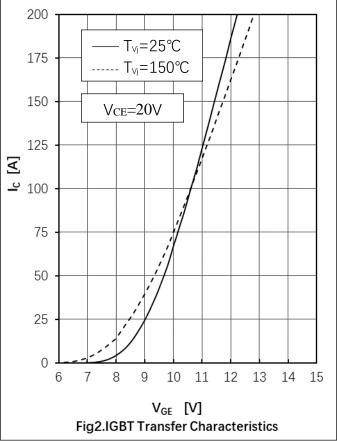
Parameter	Symbol	Conditions	Value	Unit
Collector-Emitter Voltage	V _{CES}	V _{GE} =0V, I _C =1mA, T _{vj} =25 °C	1200	V
Continuous Collector Current	Ic	T _C =100℃	100	А
Peak Collector Current	Icrm	t _p =1ms	200	Α
Gate-Emitter Voltage	V _{GES}	T _{vj} =25℃	±20	V
Total Power Dissipation (IGBT-inverter)	P _{tot}	T _c =25°C T _{vjmax} =175°C	535	W

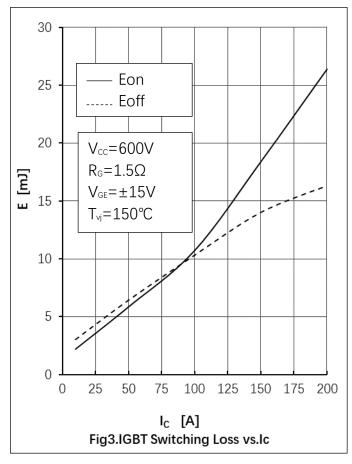
MG100UZ12TLGJ ROHS COMPLIANT

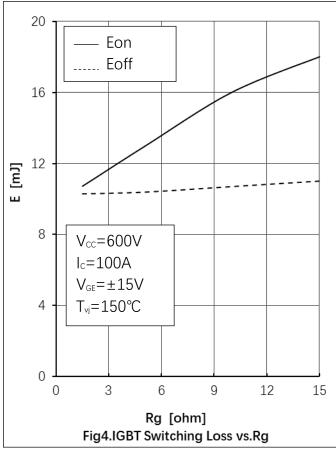
IGBT Characteristics

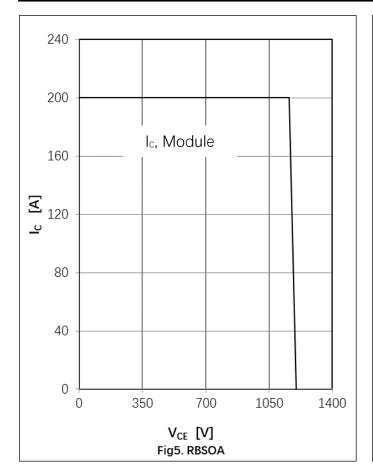
Parameter	Symbol	Conditions	Value			Unit
			Min.	Тур.	Max.	
Gate-Emitter Threshold Voltage	$V_{\text{GE(th)}}$	V_{GE} = V_{CE} , I_{C} = 4 mA, T_{vj} = 25 °C	5.0	5.8	6.5	V
Collector-Emitter Cut-off Current	I _{CES}	V _{CE} =1200V,V _{GE} =0V, T _{vj} =25°C			1.0	mA
		V _{CE} =1200V,V _{GE} =0V, T _{vj} =125°C			5.0	mA
	V _{CE(sat)}	I _C =100A,V _{GE} =15V, T _{vj} =25°C		1.85	2.25	V
Collector-Emitter Saturation Voltage		I _C =100A,V _{GE} =15V, T _{vj} =125°C		2.10		V
Cataration voltage		I _C =100A,V _{GE} =15V, T _{vj} =150°C		2.20		V
Gate Charge	Q_{G}			0.68		uC
Input Capacitance	Cies	V _{CE} =25V, V _{GE} =0V, f=1MHz, T _{vj} =25°C		8.8		nF
Reverse Transfer Capacitance	C _{res}			0.27		nF
Internal Gate Resistance	R _{gint}			7.5		Ω
Turn-on Delay Time	t _{d(on)}			129		ns
Rise Time	t _r	1 4004		40		ns
Turn-off Delay Time	$t_{d(off)}$	I_{C} =100A V_{CE} =600V V_{GE} =±15V R_{G} =1.5Ω T_{vj} =25°C		232		ns
Fall Time	t _f			176		ns
Energy Dissipation During Turn-on Time	Eon			6.2		mJ
Energy Dissipation During Turn-off Time	E _{off}			6.7		mJ
Turn-on Delay Time	t _{d(on)}	- I _C =100A V _{CE} =600V V _{GE} =±15V R _G =1.5Ω T _{vj} =150°C		105		ns
Rise Time	t _r			46		ns
Turn-off Delay Time	t _{d(off)}			260		ns
Fall Time	t _f			309		ns
Energy Dissipation During Turn-on Time	Eon			10.7		mJ
Energy Dissipation During Turn-off Time	E _{off}			10.3		mJ
SC Data	Isc	$t_p \le 10us, V_{GE} = 15V,$ $T_{vj} = 150 ^{\circ}\text{C}, V_{CC} = 600V,$ $V_{CEM} \le 1200V$		400		A

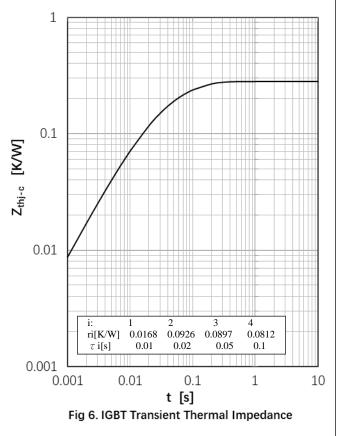


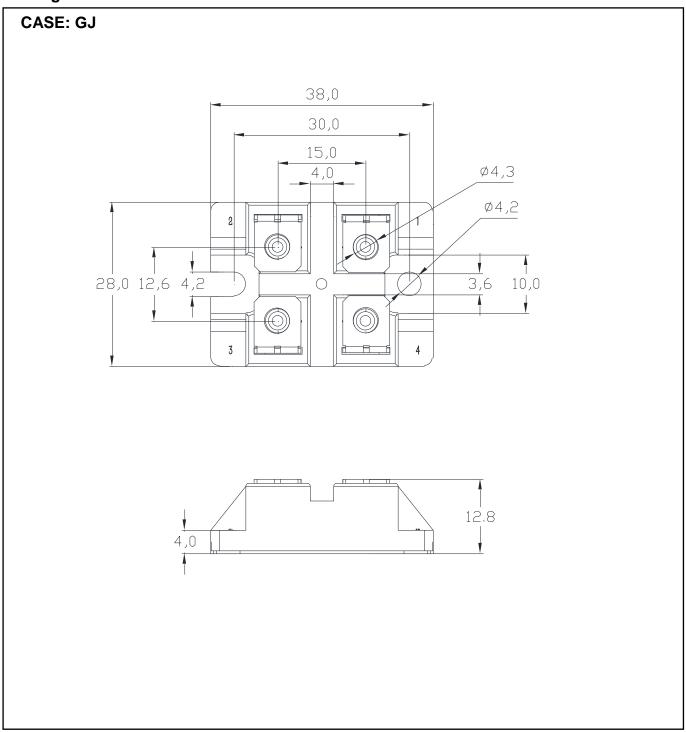

MG100UZ12TLGJ ROHS COMPLIANT


● Module Characteristics T_C=25°C unless otherwise specified


Parameter	Symbol	Conditions	Value			
			Min.	Тур.	Max.	Unit
Isolation Voltage	V _{isol}	t=1min,f=50Hz	2500			V
Maximum Junction Temperature	T_{jmax}				175	$^{\circ}$
Operating Junction Temperature	T _{vj op}		-40		150	$^{\circ}$
Storage Temperature	T _{stg}		-40		125	$^{\circ}$
Junction to Case	$R_{\theta jc}$	per IGBT			0.28	K/W
Case to Sink	R _{θcs}	Conductive grease applied		0.15		K/W
Module Electrodes Torque	Mt	Recommended(M4)	0.7	1.0	1.5	N·m
Module to Sink Torque	Ms	Recommended(M4)	0.7	1.0	1.5	N·m
Weight of Module	G			32		g







Package Outline Information

Disclaimer

The information presented in this document is for reference only. Yangzhou Yangjie Electronic Technology Co., Ltd. reserves the right to make changes without notice for the specification of the products displayed herein to improve reliability, function or design or otherwise.

The data provided in this specification comes from professional testing equipment of Yangjie Electronic Laboratory,

not general testing equipment. All the data is exclusively intended for technically trained staff. You and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of

the product data with respect to such application.

The product listed herein is designed to be used with ordinary electronic equipment or devices, and not designed to be used with equipment or devices which require high level of reliability and the malfunction of with would directly endanger human life (such as aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), Yangjie or anyone on its behalf, assumes no responsibility or liability for any damages resulting from such improper use of sale.

IGBTs is the device which is sensitive to the static electricity, it is necessary to protect the device from being damaged by the static electricity when using it.

This publication supersedes & replaces all information previously supplied. For additional information, please visit our website http://www.21yangjie.com, or consult your nearest Yangjie's sales office for further assistance.